In mathematics, a recurrence relation is an equation that recursively defines a sequence: each term of the sequence is defined as a function of the preceding terms.
The term difference equation sometimes (and for the purposes of this article) refers to a specific type of recurrence relation. Note however that "difference equation" is frequently used to refer to any recurrence relation.
An example of a recurrence relation is the logistic map:
Some simply defined recurrence relations can have very complex (chaotic) behaviours, and they are a part of the field of mathematics known as nonlinear analysis.
Solving a recurrence relation means obtaining a closed-form solution: a non-recursive function of n.
Contents |
The Fibonacci numbers are defined using the linear recurrence relation
with seed values:
Explicitly, recurrence yields the equations:
etc.
We obtain the sequence of Fibonacci numbers which begins:
It can be solved by methods described below yielding the closed form expression which involve powers of the two roots of the characteristic polynomial ; the generating function of the sequence is the rational function
An order d linear homogeneous recurrence relation with constant coefficients is an equation of the form:
where the d coefficients ci (for all i) are constants.
It can be shown that, in general, an order d linear homogeneous recurrence relation with constant coefficients can be expressed as the sum of d different geometric progressions with different common ratios. An exception occurs when the equation that normally determines the common ratios of those geometric progressions fails to have all its roots distinct[1]. Such an expression as a sum of geometric progressions is called a Binet formula.[2] (However, the term Binet formula is also frequently used with specific reference to the expression of the Fibonacci sequence as the sum of two power sequences; see Fibonacci number#Relation to the golden ratio.)
More precisely, this is an infinite list of simultaneous linear equations, one for each n>d−1. A sequence which satisfies a relation of this form is called a linear recursive sequence or LRS. There are d degrees of freedom for LRS, the initial values can be taken to be any values but then the linear recurrence determines the sequence uniquely.
The same coefficients yield the characteristic polynomial (also "auxiliary polynomial")
whose d roots play a crucial role in finding and understanding the sequences satisfying the recurrence.
Linear recursive sequences are precisely the sequences whose generating function is a rational function: the denominator is the auxiliary polynomial (up to a transform), and the numerator is obtained from the seed values.
The simplest cases are periodic sequences, , which have sequence and generating function a sum of geometric series:
More generally, given the recurrence relation:
with generating function
the series is annihilated at and above by the polynomial:
That is, multiplying the generating function by the polynomial yields
as the coefficient on , which vanishes (by the recurrence relation) for . Thus
so dividing yields
expressing the generating function as a rational function.
The denominator is a transform of the auxiliary polynomial (equivalently, reversing the order of coefficients); one could also use any multiple of this, but this normalization is chosen both because of the simple relation to the auxiliary polynomial, and so that .
Given an ordered sequence of real numbers: the first difference is defined as
The second difference is defined as
which can be simplified to
More generally: the kth difference of the sequence is written as is defined recursively as
The more restrictive definition of difference equation is an equation composed of an and its kth differences. (A widely used broader definition treats "difference equation" as synonymous with "recurrence relation". See for example rational difference equation and matrix difference equation.)
Linear recurrence relations are difference equations, and conversely; since this is a simple and common form of recurrence, some authors use the two terms interchangeably. For example, the difference equation
is equivalent to the recurrence relation
Thus one can solve many recurrence relations by rephrasing them as difference equations, and then solving the difference equation, analogously to how one solves ordinary differential equations; but it would be very difficult to make the Ackermann numbers into a difference equation, much less points on the solution to a differential equation.
See time scale calculus for a unification of the theory of difference equations with that of differential equations.
Summation equations relate to difference equations as integral equations relate to differential equations.
Single-variable or one-dimensional recurrence relations are about sequences (i.e. functions defined on one-dimensional grids). Multi-variable or n-dimensional recurrence relations are about n-dimensional grids. Functions defined on n-grids can also be studied with partial difference equations.[3]
For order 1 no theory is needed; the recurrence
has the obvious solution with and the most general solution is with . Note that the characteristic polynomial equated to zero (the characteristic equation) is simply t−r=0.
Solutions to such recurrence relations of higher order are found by systematic means, often using the fact that is a solution for the recurrence exactly when is a root of the characteristic polynomial. This can be approached directly or using generating functions (formal power series) or matrices.
Consider, for example, a recurrence relation of the form
When does it have a solution of the same general form as an = rn? Substituting this guess (ansatz) in the recurrence relation, we find that
Dividing through by rn−2, we get that all these equations reduce to the same thing:
which is the characteristic equation of the recurrence relation. Solve for r to obtain the two roots λ1, λ2: these roots are known as the characteristic roots or eigenvalues of the characteristic equation. Different solutions are obtained depending on the nature of the roots: If these roots are distinct, we have the general solution
while if they are identical (when A2 + 4B = 0), we have
This is the most general solution; the two constants C and D can be chosen based on two given initial conditions a0 and a1 to produce a specific solution.
In the case of complex eigenvalues (which also gives rise to complex values for the solution parameters C and D), the use of complex numbers can be eliminated by rewriting the solution in trigonometric form. In this case we can write the eigenvalues as Then it can be shown that can be rewritten as[4]:576-585
where
Here E and F (or equivalently, G and ) are real constants which depend on the initial conditions.
Note that in all cases—real distinct eigenvalues, real duplicated eigenvalues, and complex conjugate eigenvalues—the equation is stable (that is, the variable a converges to a fixed value (specifically, zero)); if and only if both eigenvalues are smaller than one in absolute value. In this second-order case, this condition on the eigenvalues can be shown[5] to be equivalent to |A| < 1 – B < 2.
The equation in the above example was homogeneous, in that there was no constant term. If one starts with the non-homogeneous recurrence
with constant term K, this can be converted into homogeneous form as follows: The steady state is found by setting bn = bn−1 = bn−2 = b* to obtain
Then the non-homogeneous recurrence can be rewritten in homogeneous form as
which can be solved as above.
Note also that the stability condition stated above in terms of eigenvalues for the second-order case remains valid for the general nth-order case: the equation is stable if and only if all eigenvalues of the characteristic equation are less than one in absolute value.
Given a linearly recursive sequence, let C be the transpose of the companion matrix of its characteristic polynomial, that is
where . Call this matrix C. Observe that
Determine an eigenbasis corresponding to eigenvalues . Then express the seed (the initial conditions of the LRS) as a linear combination of the eigenbasis vectors:
Then it conveniently works out that:
This description is really no different from general method above, however it is more succinct. It also works nicely for situations like
Where there are several linked recurrences .
Certain difference equations, in particular Linear constant coefficient difference equations, can be solved using z-transforms. The z-transforms are a class of integral transforms that lead to more convenient algebraic manipulations and more straightforward solutions. There are cases in which obtaining a direct solution would be all but impossible, yet solving the problem via a thoughtfully chosen integral transform is straightforward.
Given a linear homogeneous recurrence relation with constant coefficients of order d, let p(t) be the characteristic polynomial (also "auxiliary polynomial")
such that each ci corresponds to each ci in the original recurrence relation (see the general form above). Suppose λ is a root of p(t) having multiplicity r. This is to say that (t−λ)r divides p(t). The following two properties hold:
As a result of this theorem a linear homogeneous recurrence relation with constant coefficients can be solved in the following manner:
Interestingly, the method for solving linear differential equations is similar to the method above—the "intelligent guess" (ansatz) for linear differential equations with constant coefficients is where λ is a complex number that is determined by substituting the guess into the differential equation.
This is not a coincidence. If you consider the Taylor series of the solution to a linear differential equation:
you see that the coefficients of the series are given by the nth derivative of f(x) evaluated at the point a. The differential equation provides a linear difference equation relating these coefficients.
This equivalence can be used to quickly solve for the recurrence relationship for the coefficients in the power series solution of a linear differential equation.
The rule of thumb (for equations in which the polynomial multiplying the first term is non-zero at zero) is that:
and more generally
Example: The recurrence relationship for the Taylor series coefficients of the equation:
is given by
or
This example shows how problems generally solved using the power series solution method taught in normal differential equation classes can be solved in a much easier way.
Example: The differential equation
has solution
The conversion of the differential equation to a difference equation of the Taylor coefficients is
It is easy to see that the nth derivative of eax evaluated at 0 is an
If the recurrence is inhomogeneous, a particular solution can be found by the method of undetermined coefficients and the solution is the sum of the solution of the homogeneous and the particular solutions. Another method to solve an inhomogeneous recurrence is the method of symbolic differentiation. For example, consider the following recurrence:
This is an inhomogeneous recurrence. If we substitute , we obtain the recurrence
Subtracting the original recurrence from this equation yields
or equivalently
This is a homogeneous recurrence which can be solved by the methods explained above. In general, if a linear recurrence has the form
where are constant coefficients and is the inhomogeneity, then if is a polynomial with degree r, then this inhomogeneous recurrence can be reduced to a homogeneous recurrence by applying the method of symbolic differencing r times.
Many linear homogeneous recurrence relations may be solved by means of the generalized hypergeometric series. Special cases of these lead to recurrence relations for the orthogonal polynomials, and many special functions. For example, the solution to
is given by
the Bessel function, while
is solved by
the confluent hypergeometric series.
Main article: Rational difference equation
A rational difference equation has the form . Such an equation can be solved by writing as a nonlinear transformation of another variable which itself evolves linearly. Then standard methods can be used to solve the linear difference equation in .
The linear recurrence of order d,
has the characteristic equation
The recurrence is stable, meaning that the iterates converge asymptotically to a fixed value, if and only if the eigenvalues (i.e., the roots of the characteristic equation), whether real or complex, are all less than unity in absolute value.
Main article: Matrix difference equation
In the first-order matrix difference equation
with state vector x and transition matrix A, x converges asymptotically to the steady state vector x* if and only if all eigenvalues of the transition matrix A (whether real or complex) have an absolute value which is less than 1.
Consider the nonlinear first-order recurrence
This recurrence is locally stable, meaning that it converges to a fixed point x* from points sufficiently close to x*, if and only if the slope of f in the neighborhood of x* is smaller than unity in absolute value: that is,
Note that a nonlinear recurrence could have multiple fixed points, in which case some fixed points may be locally stable and others locally unstable; for continuous f two adjacent fixed points cannot both be locally stable.
A nonlinear recurrence relation could also have a cycle of period k for k > 1. Such a cycle is stable, meaning that it attracts a set of initial conditions of positive measure, if the composite function with f appearing k times is locally stable according to the same criterion:
where x* is any point on the cycle.
In a chaotic recurrence relation, the variable x stays in a bounded region but never converges to a fixed point or an attracting cycle; any fixed points or cycles of the equation are unstable. See also logistic map, dyadic transformation, and tent map.
When solving an ordinary differential equation numerically, one typically encounters a recurrence relation. For example, when solving the initial value problem
with Euler's method and a step size h, one calculates the values
by the recurrence
Systems of linear first order differential equations can be discretized exactly analytically using the methods shown in the discretization article.
Some of the best-known difference equations have their origins in the attempt to model population dynamics. For example, the Fibonacci numbers were once used as a model for the growth of a rabbit population.
The logistic map is used either directly to model population growth, or as a starting point for more detailed models. In this context, coupled difference equations are often used to model the interaction of two or more populations. For example, the Nicholson-Bailey model for a host-parasite interaction is given by
with representing the hosts, and the parasites, at time t.
Integrodifference equations are a form of recurrence relation important to spatial ecology. These and other difference equations are particularly suited to modeling univoltine populations.
In digital signal processing, recurrence relations can model feedback in a system, where outputs at one time become inputs for future time. They thus arise in infinite impulse response (IIR) digital filters.
For example, the equation for a "feedforward" IIR comb filter of delay T is:
Where is the input at time t, is the output at time t, and controls how much of the delayed signal is fed back into the output. From this we can see that
etc.
Recurrence relations, especially linear recurrence relations, are used extensively in both theoretical and empirical economics.[6] In particular, in macroeconomics one might develop a model of various broad sectors of the economy (the financial sector, the goods sector, the labor market, etc.) in which some agents' actions depend on lagged variables. The model would then be solved for current values of key variables (interest rate, real GDP, etc.) in terms of exogenous variables and lagged endogenous variables. See also time series analysis.